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Abstract— In this paper, the controller design for path-

following using input-output feedback linearization 

method for the automatic guided vehicle with 

uncertainties and external disturbances is proposed. The 

dynamic model of the system with uncertainties and 

external disturbances is presented. An auxiliary control 

input vector is designed using input-output linearization 

technique. The auxiliary control input vector transforms 

the overall system into two linearized subsystems of the 

position control subsystem and velocity control  

subsystem. Based on the two linearized subsystems, a new 

control law vector for path-following is designed. The 

new control input vector for path-following guarantees 

that the tracking errors vector converges exponentially to 

zero. In addition, a scheme of measuring the errors for 

experiment by a USB camera is also described. The 

simulation and experimental results are presented to 

illustrate effectiveness of the proposed controller. 

Keywords—Automatic Guided Vehicle (AGV), Input-

Output Feedback Linearization (IOFL), Path-Following 

Controller (PFC). 

 

I. INTRODUCTION 

Generally, AGV have been used extensively in several 

industrial and service fields such as transportation, 

military, security, space, household, office automation 

and scientific laboratory systems. 

Recently, many research results of AGV have been 

implemented via feedback linearization. In most 

researches, AGV was considered as a mobile robot. The 

control problems of a mobile robot include trajectory 

tracking, to control the robot to follow a desired trajectory 

starting from a given initial configuration, and point 

stabilization, to drive a robot from a given initial point to 

target point. Point stabilization of mobile robot via state-

space exact feedback linearization based on dynamic 

extension approach was proposed in [1]. The objective of 

this controller is to stabilize a mobile robot at a given 

target point in the polar coordinate. In [2, 3], feedback 

linearization technique was also used for trajectory 

tracking and point stabilization of mobile robot systems. 

All the above controllers show that they have a good 

performances and the tracking errors to go to zero in both 

case but consider only the kinematic model. 

Many control schemes have been proposed to deal with 

the mobile robot control problem including the 

mechanical system dynamic. In [4], Kalman-based active 

observer controller (AOB) was applied to the path 

following. It guarantees the overall system’s stability 

even in the presence of uncertainries. The performance of 

the proposed control algorithm is verified via simulation 

results but consider only in discrete model. Jeon et al. [5] 

also proposed the feedback linearization controller based 

on dynamic model for lattice type welding with seam 

tracking sensor that shows a good results in simulation 

but did not consider uncertainties and external 

disturbances. Control of welding mobile robot or mobile 

robot for tracking trajectory considering uncertainties and 

external disturbances using sliding mode control with 

good tracking performance are presented in [6]-[9].    

This paper proposed the path-following controller design 

method using input-output feedback linearization 

technique for the automatic guided vehicle with 

uncertainties and external disturbances. The dynamic 

model of the system with uncertainties and external 

disturbances is presented. An auxiliary control input 

vector is designed using input-output linearization 

technique. The auxiliary control input vector transforms 

the overall system into two linearized subsystems of the 

position control subsystem and velocity control 

subsystem. Based on the two linearized subsystems, a 

new control input vector for path-following is designed. 

The new control input vector for path-following 

guarantees that the tracking errors vector converges 

exponentially to zero. In addition, a scheme of measuring 

the errors for experiment by a USB camera is also 

described. The simulation and experimental results are 

presented to illustrate effectiveness of the proposed 

controller. 
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II. SYSTEM DESCRIPTION AND MODELING 

OF AGV  

1. System description  

Fig. 1 shows configuration of the AGV. It consists of 

frame, two driving wheels, two passive casters, one 

rotation wheel, control system and USB camera etc. Fig. 

2 shows the configuration for geometric model of the 

AGV. The two driving wheels are independently driven 

by two dc motors to achieve a desired motion and 

orientation. The two driving wheels have the same radius 

denoted by r  and are separated by 2b . The center of 

mass of the AGV is located at C ; point P  is the 

intersection of a straight line passing through the middle 

of the vehicle and an axis of the two driving wheels and is 

rotation center of AGV. The distance between the two 

points is denoted by d . The body length of the AGV is 

l . aP  is a tracking point attached to the platform with 

coordinates ( , )a ax y and is placed in the 0X  axis at a 

distance aL  (look-ahead distance) of P . A USB camera 

is located at the tracking point 
aP . The posture of the 

AGV in the global coordinate frame OXY  is specified by 

the vector [ , , ]T

p px y q  where px  and py  are the 

coordinate of point P  in the global coordinate frame and 

  is the orientation of the local frame 0 0PX Y  attached on 

the AGV platform. The AGV is modeled under the 

assumptions in [5, 6]. 

DC motor, gear 

box, and encoder

Battery 24VDC 

15Ah
Control box

Notebook

Driving wheelRear caster

Floor

USB 

camera

Rotation wheel

Encoder

Fig.1 Configuration of the AGVFig. 1: Configuration of the AGV 
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Fig. 2: Configuration for geometric model of the AGV 

2. Kinematic Modeling 

Consider a robot mobile system having an n-dimensional 

configuration space with a generalized coordinate vector 

1nq and the robot is subjected to m  independent 

constraints of the following form [4-[6]: 

A(q)q = 0   (1) 

where m nA(q)  is a full rank matrix associated with 

the nonholonomic constraints. 
( )n n m S(q)  is defined to be a full rank matrix formed 

by a set of smooth and linearly independent vector fields, 

spanning the null space of .A(q)  Thus, the result of 

multiplication of these matrices can be written as follows: 

A(q)S(q) = 0  (2) 

Supposing pure rolling conditions with no slip of the 

wheels, the following kinematics constraints ( 3)m   can 

be written: 

p px sin y cos 0    (3) 

p p rwx cos y sin b r       (4) 

p p lwx cos y sin b r       (5) 

From Eqs. (3)-(5), the constraint matrix in Eq. (1) can be 

obtained as   

0 0 0

0

0

sin cos

cos sin b r

cos sin b r

 

 

 

 
 

 
 
   

A(q)  (6) 

and 
T

p p rw lwx y      q denote configuration of 

the system ( 5)n  . 

The null space matrix S(q)  of A(q)  that satisfies Eq. (2) 

is  

1 0

0 1

cb cos cbcos

cb sin cb sin

c c

 

 

 
 
 
  
 
 
 
 

S(q)  (7) 

where the constant ( / 2 )c r b . 

From the constraint Eq. (1), q  must be in the null space 

of .A(q) It follows that { },span
1 2

q s (q), s (q)  and that 

there exists a smooth angular velocity vector 

  ( ) 1
TT n m

rw lw rw lw         z  such that 

q = S(q)z(t)  (8) 

where 
rw lw,   are angular velocities of the right and 

the left wheels, respectively. 

3. Dynamic Modeling 

Lagrange equations of motion for the nonholonomic 

mobile robot system are given by  
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1

m

k j jk

jk k

d L L
f a

dt q q




  
   

  
         (9) 

where j  are Lagrange multipliers associated with thj

( 1,...,3)j  constraint equation, jka  is thk ( 1,...,5)k   

coefficient of thk constraint equation, 
kq  is generalized 

coordiate, 
kf  is generalized force, and L  is a Lagrangian. 

Lagrangian is defined as: 

     2 2 2 2 2 2

2 2 2

c w w

p p rw rw lw lw

m m m
L x y x y x y       

2

2 2 2 2( )
2

2 2 2 2

c c m w w

rw lw

I m d I I I
   


               (10) 

where 
cm  is the mass of the robot platform and 

wm  is the 

mass of each driving wheel plus the rotor of its motor; 
cI  

is the inertia of the robot platform about a vertical axis 

through the center of mass C ; 
wI  is the inertia of each 

wheel with the motor’s rotor about the wheel axis; and 

mI  is the inertia about a defined axis in the plan of the 

wheel (perpendicular to the wheel axis); ( , )rw rwx y  and 

( , )lw lwx y  are linear velocities of right wheel and left 

wheel in x  and y  axes, respectively. 

Defining 2 22 2c m w cI I I m b m d     and 2c wm m m  , 

Eq. (10) can be rewritten as: 

   2 2 2 2 2

2 2 2

w

p p rw lw

Im I
L x y             (11) 

According to Eqs. (6), (9) and (11), the dynamic model is 

written as:  

1 2 3sin ( )cospmx          

 1 2 3cos ( )sinpmy                   (12) 

 
2 3( )I b      

2w rw rwI r     

3w lw lwI r     

where 
1 2 3, ,    are Lagrange multipliers which can 

effectively be eliminated by the below procedure. 
rwτ  and 

lwτ  are the torques of the right and left wheels, 

respectively. 

The equations in Eq. (12) can be expressed in matrix 

form, such as: 
T

M(q)q + C(q,q)q = D(q)τ - A (q)λ  (13) 

 

where 

0 0

0

0 0

0

0

w

w

m 0 0

0 m 0 0

I 0 0

0 0 I 0

0 0 0 I

 
 
 
 
 
 
 
 

M(q) , 

5 5C(q,q) Ο , 

0 0

0 0

0 0

1 0

0 1

 
 
 
 
 
 
 
 

D(q) , 
rw

lw





 
  
 

τ . 

n nM(q)  is the inertia matrix; n nC(q,q)  is the 

centripetal and Coriolis forces matrix; ( )n n m D(q)  is 

the input transformation matrix; n mT
A (q)  is a matrix 

of nonholonomic constraints; ( ) 1n m τ  is the control 

input vector; 1mλ  is the vector of constraint forces. 

4. State Space Realization 

Differentiating Eq. (8) with respect to t , substituting in 

Eq. (13), multiplying the both sides of the equation by 
T

S  and noticing that 0T T
(S A )λ  from Eq. (2) and 

( ) ( )n m n m  T
S D I , the following form can be obtained: 

T T
S MSz +S (MS +CS)z = τ  (14) 

The real dynamic equation of AGV with the external 

disturbance can be derived from Eq. (14)  

T T

d
S MSz +S (MS +CS)z τ = τ    

 
d

Mz +Cz τ = τ   (15) 

where ( ) ( )n m n m   T
M S MS ,  

    ( ) ( )n m n m   T
C S (MS +CS) . 

It is assumed that the disturbance vector can be expressed 

as a multiplier of matrix M  as follows [6]: 

  ( ) 1n m

d

 
d
τ = Mf , ( ) 1n m

d

 f .        (16) 

1 2[ ]T

d d df ff , 
1 1 ,m

d df f 2 2 .m

d df f     (17) 

where 1

m

df  and 2

m

df  are upper bounds of disturbances. 

The state variable vector is defined as 

  (2 ) 1n m  
T

x q z  (18) 

  
T

p p rw lw rw lwx y θ θ       

Based on Eqs. (8), (15), (16) and (18), the dynamic 

system of AGV can be expressed in the following state-

space form: 

 

1( ) nn n m

d

       
       

      
-1

2

0Szq 0
x = + τ

ffz M
 (19) 

where 
( ) 1.n m   

2
f MCz  
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Assuming that the number of system inputs ( ),r n m 

and that -1
M  has rank ( ),n m  the following control 

input vector can be obtained. 

[ ]d 
2

τ = M u f f  (20) 

where ( ) 1n m  u z  is an auxiliary control input 

vector. 

From Eq. (20), Eq. (19) can be rewritten to the form 

( )

( ) 1 ( ) ( )

n n m

n m n m n m

 

    

   
   
   

S(q)z 0
x = + u = f(x) + g(x)u

0 I
 (21) 

where  
( ) 1

(2 ) 1,
n m

n m

 

 
 

 
  

S(q)z
f(x) =

0
  

  
( ) (2 ) ( )

( ) ( )

n n m n m n m

n m n m

    

  

 
 

  

0
g(x) =

I
. 

III. CONTROLLER DESIGN FOR PATH-

FOLLWING USING INPUT-OUTPUT 

FEEDBACK LINEARIZATION METHOD 

Consider the following MIMO (multi-input/multi-output) 

nonlinear system.  

x = f(x)+g(x)u  (22) 

y = h(x)   (23) 

where (2 ) 1n m x  is the state vector, ( ) 1n m u  is 

auxiliary control input vector, ( ) 1n m y  is the output 

vector. (2 ) 1n m f(x)  and (2 ) ( )n m n m  g(x)  are 

smooth vector fields, and ( ) 1n m h(x)  are smooth 

functions on the state space. 

The objective of this part is to design a path-following 

controller that allows the AGV to follow a desired path in 

the Cartesian space starting from a given initial 

configuration with a desired linear velocity.  

Let the output equation be represented by a vector y  as 

follows:  

   1 2 1 2( ) ( )
T T

y y h h y q z  (24) 

where 
1( )h q  is the shortest distance from the tracking 

point 
aP  on the AGV platform to the desired path, 

2 ( )h z  

is linear velocity pv  of point P  of AGV along the 
0X  

axis.  

In case of a straight line described by 0Ax By C   , 

the output equations are given as follows:  

1 1
2 2

( ) ( , , ) a a

a a

Ax By C
y h x y

A B


 
 


q  (25) 

and   2 2 ( )y h z p px cos y sin    

       ( )
2

rw lw p

r
v     (26) 

where ( , )a ax y  is the coordinates of the point ;aP

( , , )p px y   is related to the state variables by the 

following equations. 

a p ax x L cos   (27) 

a p ay y L sin   

Now, a path-following controller can be designed based 

on the feedback linearization technique. To get the 

decoupling matrix for feedback linearization of the above 

output equations, the output equations are differentiated 

until the input terms appear in the differentiated output 

equations as follows: 

1

1

h
y





h1
q = J (q)S(q)z

q
               (28) 

1

( )
y






h1

h1

J S
qz + J (q)S(q)z

q
         

1

( )
y


 



h1

h1

J S
qz + J (q)S(q)u

q
               (29) 

2y  
h2 h2

J (z)z J (z)u            (30) 

where 11 nh 
 


h1
J (q)

q
and 1 ( )2

2

n mh  
 


h
J (z)

z
 are 

Jacobian matrices. 

So the decoupling matrix 
d

Φ for the above equations is 

given as follows: 

 

2 ( )n m    
     

  

d1 h1

d

d2 h2

Φ (q) J (q)S(q)
Φ

Φ (z) J (z)
  (31) 

 

where the Jacobian matrices in Eq. (31) for the straight 

line are calculated from Eqs. (25) and (26) as follows: 

1h



h1
J (q)

q
  

2 2

1
cos sin

0

0

T

a a

A

B

BL AL
A B

 

 
 
 
  
 
 
 
 

 (32) 

and 2

2 2

h r r  
     

h2
J (z)

z
          (33) 

The necessary and sufficient condition for the system Eq. 

(22) to be input-output linearized form and to be 

controllable is that the determinant of the following 

decoupling matrix Eq. (31) is not zero, det( ) 0
d

Φ [8]. 

 
2

2 2

( cos sin )
det( )

2

ar L B A

b A B

 
 


d

Φ                     (34) 
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where 
d

Φ  is singular if the 
0X  axis is perpendicular to 

the straight line. 

From Eqs. (29)-(31), the decoupling matrix is used to 

establish the input-output feedback linearization as shown 

below, 

1

2

y

y

 
  
 

d d
y Φ z +Φ u                              (35) 

where 
2 ( )

( )
( )

n m 

 
        
  
   

 

h1
h1

d

h2

J S
J Sq

qq
qΦ

(J )
0z

z

 

Assuming that the condition det( ) 0
d

Φ  is satisfied and 

the transformation of state variables is a diffeomorphism, 

the auxiliary control input vector for achieving input-

output linearization is given by 

 
 d

-1

d
u = Φ η-Φ z  (36) 

where z  is the vector of wheels velocities; 2 1η  is 

defined as a new control input vector in the following 

form. 

1
1

2
2

P p D p d

V v d

k e k e r

k e r





    
    

   
η  (37) 

where a tracking error vector with the position and linear 

velocity errors is defined as follows: 

1

1

2

2

p d

v d

e r y

e r y

   
    

   
e  (38) 

and , ,P D Vk k k  are gains chosen to ensure the exponential 

convergence of the control errors to zero; 1 2,d dr r  are 

reference shortest distance and reference linear velocity, 

respectively. 

The new control input vector η  with , , 0P D Vk k k   

makes the tracking error vector go to zero.  

Subtituting the auxiliary control input vector Eq. (36) into 

Eq. (35), a closed loop system can be obtained in the 

following two decoupled linearized form: 

1 1

2 2

y

y





 
 

 
 or y = η  (39) 

Eq. (39) are single input-single output systems with 

second-order of position control model and first-order of 

velocity control model. 

From Eqs. (37)-(39), the tracking error dynamics of the 

closed loop systems are given by 

0p D p P pe k e k e    (40) 

0v V ve k e   (41) 

which are exponentially stable [9].  

The path-following control scheme is presented in Fig. 3. 

In Fig. 3, 
d

r  represents the desired values for the outputs, 

1h  and 
2h . e  is the error vector between the actual and 

the desired values. The control input vector Eq. (20) is 

applied so that the AGV dynamics state equation (19) is 

simplified into the form Eq. (21). This process is 

represented by the dotted block in Fig. 3. An auxiliary 

control input vector Eq. (36) designed with input-output 

linearization technique linearizes and decouples the 

overall system into two decoupled linearized subsystems, 

the position control subsystem and the velocity control 

subsystem as shown Eq. (39). The thick dashed block in 

Fig. 3 represents the global system plant with input-

output linearization. The new control input vector Eq. 

(37) makes the tracking error vector go to zezo. 
f

Eq. (36) Eq. (20) ò Eq. (22)Eq. (19)
yxu  x

.
rd

+
-

x = f(x) + g(x)u

e
Eq. (37)

d

Fig. 3: Scheme of the control algorithm 

IV. ERROR MESUREMENT AND HARDWARE 

1. Mesurement of tracking error using camera 

To achieve the controller, the errors have to be detected. 

The reference path is a straight line as a desired trajectory 

marked on a floor. A camera is mounted in front of the 

AGV to capture directly an image of the tracking line. 

The errors detecting scheme is shown in Fig. 4. 
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Fig. 4: Errors detecting scheme 

The errors can be expressed by 

1

arctan[( ) / ( )]

(160 )cos

A B A B

x

x x y y

h m





  


 
             (42) 

2. Hardware and Control System  

The configuration diagram of the total control system is 

shown in Fig. 5. The control system is based on the 

integration of notebook and PIC-based controller. The 

hardware of the system is composed of two-level control: 

the image processing control as high level computer 

control and the device control as low level 

microcontroller control. High-level image processing 

control algorithms are written in VC++ and run with a 

sampling time of 15 ms on the notebook (a Pentium IV-
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2GHz processor). The notebook communicates with the 

PIC-based controller on the AGV through a COM port. 

For the operation, QuickCam SDK is used to capture the 

image stream into memory in bitmap format with size 

320pixel 240pixel via a USB camera at speed of 30 

frames per seconds. The image is processed by VC++ 

program to extract the parameters of bounding box, center 

and direction of line. These parameters are used to 

determine oreintation angle and shortest distance as errors 

detecting scheme in Fig. 4. The input-output feedback 

linearization controller is designed to calculate the 

demand velocity of wheels. These demand torques are 

sent to the PIC-based controller to control the AGV 

motion. The tracked desired trajectory is shown on the 

computer interface of image processing in Visual C++ as 

shown in Fig. 6. 

 

Fig. 5: The configuration of control system 

 

 Fig. 6: The tracked desired trajectory 

 

The configuration of the PIC-based controllers for the low 

level control is shown in Fig. 7. It consists of 

microcontrollers PIC18F452’s which are operated with 

the clock frequency 40MHz. The microcontroller 

performs three basis tasks: 1) communicating with the 

higher-level controller through RS232; 2) reading number 

of pulses from encoders; and 3) generating PWM duty 

cycle. The low level controller is composed of two parts: 

master controller and slave controller. The master 

controller functions as the low level control, that is, to 

receive demand velocities from the computer via RS232 

and, in turn, to send the commands to the two slave 

controllers via I2C communication, respectively. The 

slave controller integrates two PIC18F452’s with two 

motor drivers LMD18200 for the DC motor control. The 

sampling time of low level control system is about 10ms. 

The experimental AGV developed for this paper is shown 

in Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: The configuration of the PIC-based controllers 

 

   

 

 

 

 

 

 

 

 

 

 

Fig. 8: The experimental AGV 

 

V. SIMULATION AND EXPERIMENTAL 

RESULTS 

To verify the effectiveness of the proposed controller, 

simulations have been done for a AGV following a 

straight line. Fig. 9 shows that the desired trajectory is the 

straight line of 2.82 [ ].m The straight line has the form of 

.y x  So the factors are 1, 1, 0.A B C     The 

desired linear velocity of AGV is 2 0.05 [ / ]dr m s . The 

gains for the new control input vector are 23.6 [ ],Pk s

11.4 [ ],Dk s  14.2 [ ].Vk s  The input external 

disturbances are chosen to be random noises of mean 0  

with variance 0.7 , and the upper bounds of disturbances 

are assumed as 2

1 1 [ / ]m

df rad s and 2

2 1 [ / ].m

df rad s

The numerical parameter values and the innital values for 
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simulation and experiment are given in Table 1 and Table 

2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: The desired trajectory 

 

Table. 1: The numerical parameters values for simulation 

and experiment 

Parameters Values Units 

b  0.39      [ ]m  

r  0.16      [ ]m  

d  0.45      [ ]m  

l  1.2      [ ]m  

cm
 32.67      [ ]kg  

wm  2.75      [ ]kg  

cI
 17.85     2[ ]kgm  

wI  0.0135     2[ ]kgm  

mI
 0.0068     2[ ]kgm  

 

Table. 2: The initial values for simulation and experiment 

rx  0.2 [ ]m  px  0.32 [ ]m  

ry  0.2 [ ]m  py  0.24 [ ]m  

r  45 [deg]    30[deg]  

pv  0 [ / ]m s  
Reference 

inputs 

1 0 [ ]dr m , 

2 0.05 [ / ]dr m s  

aL  0.06 [ ]m  Sampling 

time 
0.01[ ]T s   

 

The simulation and experimental results for path- 

following are shown in Figs. 10 to 17. Figs. 10 and 11 

show the movement of the AGV along the desired 

trajectory for full time 40 seconds and the beginning time. 

As shown in Fig. 12, the tracking point 
aP  of the AGV is 

able to reach the straight line path and stay on the path for 

full time. Fig. 13 shows that the linear velocity of the 

AGV is at the vicinity of 0.05 [ / ]m s  as desired. The 

experimental position error 
pe  and the experimental 

linear velocity error ve  converge to zero and are bounded 

along the simulation result as shown in Figs. 14 and 15. 

The angular velocities of left and right wheel are shown 

in Fig. 16. It shows that the angular velocities of left and 

right wheels change quickly at the beginning time and 

have same value about 0.32 [ / ]rad s  for following the 

straight line from about 7  seconds. Fig. 17 shows the 

control input vector τ . They change greatly at the 

beginning time. However, they are bounded within the 

bounds of 7.6 [ . ]N m and their average value converges 

to zero when AGV moves along the desired trajectory 

after 4  seconds. The above simulation and experimental 

results are presented to illustrate the effectiveness of the 

proposed control algorithm.  

 
Fig. 10: Movement of AGV for full time 
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Fig. 11: Movement of AGV at the beginning time 
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Fig. 12: Shortest distance 1h  

 
Fig. 13: Linear velocity of the AGV for full time 

 
Fig. 14: Simulation and experimental position error 

results pe  

 
Fig. 15: Simulation and experimental linear velocity 

error results ve  

 
Fig. 16: Angular velocities of the right and left wheels 
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Fig. 17: Control input vector τ  

 

VI. CONCLUSION 

In this paper, a path-following controller is proposed 

based on the dynamic model of AGV under uncertainties 

and external disturbances using input-output feedback 

linearization method. Using the input-output feedback 
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linearization technique, two decoupled linearized SISO 

system are obtained: a second-order position model, and a 

first-order velocity model. A new control input vector is 

chosen to make the tracking error vector go exponentially 

to zero. To implement the proposed controller, a control 

system is developed based on PIC microcontroller and 

USB camera. The simulation and experimental results are 

presented to illustrate the good applicability to AGV of 

the proposed control algorithm. 
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